
1

Random Low-Level Stuff

Drahflow

2

Scope

Context:

Coded elymas for one year

Hand-made 80x86 assembler

Debugging with gdb and judicious usage of UD2

This talk:

CPU and debugger disagree I

CPU and debugger disagree II

CPU and intuition disagree I

3

What I saw

=> 0x300000252233: movabs $0x300000216000,%rax

(gdb)

0x000030000025223d in ?? ()

7: x/i $rip

=> 0x30000025223d: callq *%rax

(gdb) info registers

rax 0xcc00300000216000 -3746942113411932160

rbx 0x30000021f093 52776560357523

4

How I solved it

(gdb) disable 1

(gdb) run

5

What I saw

0x0000000000400079 in _start ()

1: x/i $rip

=> 0x400079 <_start+1>: jae 0x77

(gdb) stepi

0x0000000000400079 in _start ()

1: x/i $rip

=> 0x400079 <_start+1>: jae 0x77

(gdb)

6

Why this is

(gdb) x /7bx $rip

0x400079 <_start+1>: 0x66 0x0f 0x83

0xf9 0xff 0xff

0xff

This opcode sequence would intuitively be 16-width relative
conditional jump. But 64-bit mode has it undefined. In fact, it’s
doing different things on Intel vs. AMD.

7

Surprising capabilities

Bit test (and set / reset)

btl $2, %rcx

btl %eax, %rcx

btl %eax, (%rcx)

8

Surprising capabilities

“ If the bit base operand is a memory location, bit 0 of the byte at
the specified address is the bit base of the bit string. If the bit
index is in a register, the instruction selects a bit position relative
to the bit base in the range –263 to +263–1 if the operand size is
64, –231 to +231–1, if the operand size is 32, and –215 to +215–1
if the operand size is 16. ”

