
1

Implicit Loops

Drahflow

2015-04-14

2

The bad 1/∞

C++:

for(int i = 0; i < foo.size(); ++i)

result[i] = compute(foo[i]);

i repeated 5 times

i is devoid of meaning

foo.size() reevaluated

result better has enough space

3

The bad 2/∞

C++:

for(auto &f: foo)

result.push back(compute(f));

auto is devoid of meaning

f is devoid of meaning

push back is not very meaningful, either

4

The bad 3/∞

C++:

transform(foo.begin(), foo.end(),

back inserter(result), compute);

foo is repeated twice

begin/end just specifies the 95%-case of “all”

back inserter is not very meaningful, either

5

The less bad 1/∞

Python:

[compute(f) for f in foo]

f is repeated twice

only works for arrays, sets

6

The less bad 2/∞

Python:

{k: compute(v) for (k, v) in foo.items()}

k, v are repeated twice

items is pretty meaningless (and should be iteritems)

7

The kinda ok 1/?

Haskell:

map compute foo

works for arrays, sets, dictionaries, user-defined types

8

APL

J:

compute foo

works for arrays

9

Function Rank

J:

1 2 3 + 4 5 6

Result:

5 7 9

J: 1 2 3 +/ 4 5 6

Result:

5 6 7

6 7 8

7 8 9

J only allows two arguments per function

10

Elymas

Elymas:

foo compute

works for arrays, dictionaries, functions, user-defined types

11

Elymas

Elymas:

1 [1 2 3] add

Result:

[2 3 4]

Elymas:

[0 1] [1 2 3 4] mul

Result:

[0 2 0 4]

12

Elymas

Elymas:

{ 1 add } ’0.0 ==f

{ 1 sub } ’0.0 ==g

f g mul =*h

[1 2 3] h

Result:

[0 3 8]

